I Can Has Cheezburger? A Nonparanormal Approach to Combining Textual and Visual Information for Predicting and Generating Popular Meme Descriptions

نویسندگان

  • William Yang Wang
  • Miaomiao Wen
چکیده

The advent of social media has brought Internet memes, a unique social phenomenon, to the front stage of the Web. Embodied in the form of images with text descriptions, little do we know about the “language of memes”. In this paper, we statistically study the correlations among popular memes and their wordings, and generate meme descriptions from raw images. To do this, we take a multimodal approach—we propose a robust nonparanormal model to learn the stochastic dependencies among the image, the candidate descriptions, and the popular votes. In experiments, we show that combining text and vision helps identifying popular meme descriptions; that our nonparanormal model is able to learn dense and continuous vision features jointly with sparse and discrete text features in a principled manner, outperforming various competitive baselines; that our system can generate meme descriptions using a simple pipeline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Analysis of the Effect of Visual and Textual Information on the Health Information Perception of High School Girl Students in Tehran

Purpose: Information and information sources can be divided into three broad categories according to their nature or type: textual information (book, journal article, conference paper, dissertation, newspaper, etc.), visual information (infographic, photo, Cartoons, films, etc.) and audiovisual information. The purpose of this study is to determine the effect of reading textual information in c...

متن کامل

Combining Geometric, Textual and Visual Features for Predicting Prepositions in Image Descriptions

We investigate the role that geometric, textual and visual features play in the task of predicting a preposition that links two visual entities depicted in an image. The task is an important part of the subsequent process of generating image descriptions. We explore the prediction of prepositions for a pair of entities, both in the case when the labels of such entities are known and unknown. In...

متن کامل

The Effect of Visual Representation, Textual Representation, and Glossing on Second Language Vocabulary Learning

In this study, the researcher chose three different vocabulary techniques (Visual Representation, Textual Enhancement, and Glossing) and compared them with traditional method of teaching vocabulary. 80 advanced EFL Learners were assigned as four intact groups (three experimental and one control group) through using a proficiency test and a vocabulary test as a pre-test. In the visual group, stu...

متن کامل

Tell and Predict: Kernel Classifier Prediction for Unseen Visual Classes from Unstructured Text Descriptions

In this paper we propose a framework for predicting kernelized classifiers in the visual domain for categories with no training images where the knowledge comes from textual description about these categories. Through our optimization framework, the proposed approach is capable of embedding the class-level knowledge from the text domain as kernel classifiers in the visual domain. We also propos...

متن کامل

Combining Geometric, Textual and Visual Features for Predicting Prepositions in Image Descriptions: Supplementary Material

Prepositions in Image Descriptions: Supplementary Material Arnau Ramisa* Josiah Wang* Ying Lu Emmanuel Dellandrea Francesc Moreno-Noguer Robert Gaizauskas 1 Institut de Robòtica i Informàtica Industrial (UPC-CSIC), Barcelona, Spain 2 Department of Computer Science, University of Sheffield, UK 3 LIRIS, École Centrale de Lyon, France {aramisa, fmoreno}@iri.upc.edu {j.k.wang, r.gaizauskas}@sheffie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015